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OPTIMAL DESIGN OF SOLID PLATES

W. Kozrowskl and Z. MrOz

Institute of Basic Technical Research, Warsaw

Abstract—The problem of optimal design of solid plates is concerned with the determination of a variable plate
thickness that corresponds to minimum volume when the limit load is prescribed. In its solution, the condition
of constancy of specific power of dissipation on the exterior plate surfaces is usually applied. This condition only
assures a stationary value of the volume and may represent neither an absolute nor a local minimum. Examples
of cantilever and circular plates are discussed, and alternative designs are presented which are of smaller volumes
than the usual design. A modified formulation of the optimal design problem is discussed. '

1. INTRODUCTION

CoNSIDER a solid plate made of rigid, perfectly plastic material. For prescribed plan-form
of the plate and conditions of loading and support, the problem of optimal design is
concerned with the determination of a variable thickness 2k for which the plate volume
attains a minimum when the limit load is prescribed. Thus

V=f2hdA = min. (L.1)

Since the thickness can be expressed in terms of the limit bending moment M, = o h?,
we respectively obtain the following expressions for the Tresca and Mises yield conditions

vy = f (M1 +| M| +1M, = M,JTE dA = f W, dA, 12)
and
Vi = J‘(Mf—Mle‘%—M%)‘ldA =fWMdA, (1.3)

where M, and M, are the principal bending moments. In what follows, we shall call the
integrands W, and W, the specific cost functions since these express the material volume,
or more generally “cost” of a plate referred to unit area of the middle plane. The problem
so formulated was treated in several papers. Hopkins and Prager [1] considered a simply
supported circular plate and obtained the solution for the Tresca material. The alternative
solution for the Mises material was considered by Freiberger and Tekinalp [2], who
derived the condition of analytical extremum ; it requires the constant mean rate of energy
dissipation D per unit area of the middle surface. Optimal design of solid annular plates
was considered by Mroz [4] ; it was shown in [4] that the condition D = const. corresponds
to a local minimum only for states represented by corners of the Tresca hexagon. A similar
problem for sandwich annular plates was treated by Megarefs [10, 11]. Sheu and Prager [12]
sought the optimal solution for annular sandwich plates assuming piecewise constant
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thickness. The general criteria of optimum design were discussed by Drucker and Shield
[3] and Mroz {3, 6]. A sufficient criterion for minimum volume is that the rate of energy
dissipation D should be constant on the free surface that may be varied and be smaller
outside of this surface than in the inerior of the body. However, this criterion does not
apply to solid plates since the rate of energy dissipation increases with the distance measured
along the normal to the middle plane; thus it is greater in the exterior of the plate than in
its interior and the solution for D = const. may also correspond to a local maximum. This
situation was encountered in [7] where the total cost of materials in reinforced slabs was
to be minimized. Only for some stress states can the solution correspond to a local minimum.
For the Tresca yield condition these states are represented by corners of the yield hexagon
and for the Mises yield condition these are defined by the inequalities

—~0725 < M,/M, < 11725, —0725 < M,y/M, < 1725, (1.4)

which follow from the condition of convexity of the specific cost function with respect to
M1 and sz .

The character of optimal solutions for frames was recently discussed by Megarefs and
Hodge [8] both for convex and concave cost functions. When the specific cost function is
a concave function of a limit bending moment, W = ¢M* o < 1, it was shown that the
absolute minimum may be non-analytical and does not correspond to constant mean rate
of energy dissipation. A theory of optimal design for convex cost functions was presented
by Margal and Prager [9]. The present case, however, is not embraced by this theory since
Wr and W), as defined by (1.1) and (1.2) are not convex for all values of M, and M,.

To investigate the character of absolute minimum solutions, we consider two examples:
an infinite cantilever plate and a circular plate, both uniformly loaded. In addition to a
design satisfying the condition D = const,, an alternative design is considered for which
a thin plate of sectionally constant thickness is reinforced by ribs. For the latter design
the volume of plate can be smaller than that corresponding to the local minimum solution
provided sufficiently high ribs are allowed. By passing to an infinite number of ribs, the
volume of the plate tends to zero when the ribs become infinitely high.t Besides the
theoretical result, the present analysis exhibits quantitatively the effect of reinforcing by
ribs on limit load and economy of design. We shall also modify formulation of the problem
of optimal design by introducing the notion of available space in which the solid plate
carrying prescribed loads should be located.

It may be expected that similar effects occur for other criteria of optimum design.
For instance, when maximum stiffness of an elastic structure is assumed as the design
criterion, a theorem analogous to that for plastic structures has been proved [6]: for an
absolute minimum to occur, the specific elastic energy must be constant on the free surface
subjected to variation and be a decreasing function when moving in the exterior of that
surface. Thus for solid plates the latter condition cannot be satisfied. This situation 1s
similar to that encountered in the plastic design of solid plates.

+ After preparation of this paper the authors became aware of the note by Brotchie [13] who demonstrated
that the volume of an annular plate may tend to zero when it is reinforced by ribs of infinite thickness. It should
be noted here that ribs of infinite thickness occur also in the design satisfying the condition D = const. Thus for
sandwich plates such “design constraints™ have been exhibited by Megarefs [10, 11] and investigated by Sheu
and Prager [12] for plates with piecewise varying thickness; they also occur in solid plates designed for the condi-
tion D = const. [4]. Whereas such ribs occur due to necessity of satisfying boundary conditions, in the present
paper these are introduced in order to achieve a better design than that satisfying the condition D = const.
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2. A CANTILEVER PLATE

Consider an infinite plate of width b, built-in at one edge y = band subjected to uniform
distributed transverse load g (Fig. 1b). Throughout the following analysis the Tresca yield
condition will be used. The optimal design satisfying the condition D = const. is obtained

for the stress state M; = M, = 0, M, = —4g)°, from which the variable thickness 2h
is obtained by setting |M,] = M, = a,h”. Thus
2aq\ %
2h = (i’) y, Q.1
Oo

(Fig. 1a). The corresponding rate of curvature %, is obtained from the condition of constant
mean rate of energy dissipation:

~ My C
D = Y= q, %, =—, 22
where o and C are positive constants.
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F1G. 1. A cantilever plate uniformly loaded ; (a) stationary-volume design, (b) and (c) rib-reinforced plate.

Consider now the alternative design shown in Figs. 1b, ¢. The plate of constant thickness
2h, is reinforced by ribs located at the distance ! with linearly varying height 2h,. Let us
introduce the non-dimensional geometric parameters

b ly L

T ol
In order to determine the thickness of plate and ribs, we shall apply both the static and
the kinematic approach. Construct first a statically admissible stress field by assuming
that the bending moments within the plate are carried only in the x-direction and neglecting
the effect of the built-in edge. Thus the plate carries the transverse load in the same way
as a set of beams that are parallel to the x-axis and clamped at their junctions with ribs.
A maximum value of the bending moment is reached in the mid-section x = b/2¢ and
in the end sections ; assuming this value to be equal to the limit bending moment, we have
My = 3qb(n/p)* = aoh?, and

= 3(1—2n). (2.3)

2y = A%, A= (i)zb. (2.4)
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The ribs are treated as plates, loaded uniformly by the pressure ¢; the principal moment
directions are assumed to coincide with the x- and y-axes. The equilibrium equation

M, M,
= + ("JVZ' = —{ (25)

2
X

is solved assuming that M, = M (x), M, = M (y) and the shear forces Q.. @, are linear
functions of x and y, respectively. We find

x? {—n{b\?
M. = SRS S =M
. fm[[wzn . (q)) ] .

{(2.6)

Since both principal moments are negative, the rib thickness is determined from the
condition

Mo(x, y) = sup[IM (x), 1M (p)]. 2.7)

It turns out that for y = 0 the maximum value of M, defines the thickness whereas at the
clamped edge y = b the thickness is defined by the moment M. Accordingly

1 1\t
2m(0) = A—[n(1—n))t,  2hy(b) = A|—-] . (2.8)
? I—2n
Assuming linearly varying thickness of the rib between the values given by (2.8) (which
circumscribes the rib profile calculated from (2.6)), we find the dimensionless volume of
the typical plate portion contained within the strip of width ! and fixed length b

v 12\t 12y
V:—-w:— e
ab? (pZ{q’( SR A

The formula (2.9) corresponds to upper bound of plate volume since the design is based
upon the statically admissible stress field.

To obtain a lower bound, consider the failure mechanism shown in Fig. 2. The yield
line along the built-in edge defines the failure mechanism of the whole plate whereas the
yield lines AB, BD, AD, DC, BF, AE define the failure mechanism of the plate portion
between rigid ribs. Equating the rate of work of external forces to the rate of dissipation
along the yield lines, we find by superimposing the two mechanisms that

it + 27}2} . (2.9

i 1 -2y 7
e gb®, +—gh* (3 - W, = (M + M, )w +4M ( +-ﬁ)w (2.10)
2(’063 1 3@9 n (1 W, p ol 0 1 o n o 2s

where w,, W, are shown in Fig. 2, and M, Mj, are the limit bending moments of the plate
and the rib, respectively. From (2.10), we obtain

2 2
y =4 Uy or S S VA (?f’é_-zMon)(i—zr,;-*, @.11)

12" e
and
] (2.12)

107407

T
2hy = An[%}( =L




Optimal design of solid plates 785

7 o oot
Mo A M Mo
}n. 0
M.
E C F Wi | [
N S _&E{
v.
l LO L.
L

FiG. 2. Failure mechanism of cantilever plate.

The quantity {, should be determined from the extremum condition for g which yields

T4

The rib thickness at the built-in edge is obtained from the second equation (2.11)

3 _r 1
2h1(b)=A{ 2 [1~’7 é‘( 3= ]} (2.14)
2n

1- 3 \Let+n?

it varies linearly along the y-axis, attaining the plate thickness 2k, for y = 0. The non-
dimensional volume of the typical portion of the plate of length [ equals

= nl & 3-¢, o '73§1 3-4 :
V=g+pnl —(“)J +*{(i~ [1—# R OO AR
G n)¢[3 Lo+ o177 3 \Go+n?

Figure 3 presents the variation of V in dependence on both # and ¢. Note that, for = 0,
we obtain the volume of the plate satisfying the extremum condition (Fig. 1a). It is seen
that for sufficiently large ¢ (¢ > 2-0), all designs correspond to smaller volumes than that
for n = 0. When n — 0:5 and ¢ — >0, which corresponds to infinitely densely distributed
ribs of zero width and infinite height, the plate volume tends to zero. This, of course, is
only a theoretical result because the thin plate theory ceases to be valid for high ribs and
the problem of lateral stability becomes important. It nevertheless indicates that the
problem of optimal design considered above may not be correctly formulated. Note,
furthermore, that for ¢ > 0-8 the upper and lower bounds are very close; for smaller
values of ¢, the effect of the built-in edge should be accounted for in constructing the
statically admissible stress field. Figure 3 presents also the ratio f; of the maximum thick-
ness 2h,(b) of the rib-reinforced plate calculated from the static solution to the maximum
thickness 2h(b) of the plate of Fig, 1a. We see that f;, monotonically increases with # and
all plates of smaller volume than that for n = 0 are higher at the built-in edge. If the
available space for plate is prescribed in the form of a strip z = +¢, symmetrically on both
sides of the middle plane, from Fig. 3 a proper design can be selected. When 2t > 2h(b),
this design will correspond to a rib-reinforced plate and the solution (2.4) constitutes a
limit case when 2t = 2h(b).
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F16. 3. Volume of plate portion of width / in function of # and ¢, and the thickness ratio of two designs
(curve ;).

3. A SIMPLY SUPPORTED CIRCULAR PLATE

Consider the other case for which a complete solution satisfying the condition for
local extremum exists: a circular plate, simply supported and subjected to the uniform
transverse load g. For the Tresca yield condition, the stress state of the local minimum
solution corresponds to a corner of the yield hexagon for which M, = M, = M, = goh*;
the thickness and volume are given by

2h, = [l(RZ—rZ)] .V, =08l6V, 3.1)
Oo

where M,, M, are radial and circumferential bending moments, V, is the plate volume

of the design (3.1) and V; is the volume of the plate of constant thickness carrying the same

limit load. This solution was given by Hopkins and Prager [1]. Later it was shown in {2]

that (3.1) corresponds to local minimum whereas there is another solution for which the

condition D = const. is satisfied and it corresponds to a local maximum of volume.

Now, we shall consider other designs and demonstrate that smaller volumes can be
achieved in the class of plates reinforced by circumferential ribs. Similarly as previously,
ribs are treated as plates of different thickness and complete solutions are sought for the
Tresca yield condition.

Let the plate be divided into n annular regions 0 =ry <ry <r,... <r, = R, each
of constant thickness 2h,, 2h,,...,2h, with the corresponding limit moments
MP, MP, . M. Let there be 2h, < 2h, > 2hy < ... > 2h_; < 2h > 2h. where
k=0,2,4,..., Fig. 4. When n = k,,,, by passing r,_, — r, = R, the thickness of
the outermost annulus tends to zero and the static field within the plate is the same
as for the case n = k,. On the other hand, when n = k, and r,_, — r, = R, the thickness
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a)

2h

F16. 4. Circular plate reinforced by circumferential ribs.

of the outermost annulus tends to infinity. We therefore consider the case n = k., and
by setting r,.., » R, the case n = k, is obtained; the transition from the case n = k,
ton =k, ., however, is not possible.

Since the annuli r, < r < r.,, are regarded as being built-in at the interfaces, the
following boundary conditions must be imposed

r=rg Mr) = Mg, r=rga MAne ) = —METY. (3.2)

Thus within the interval {r;_,, r;> the radial moment should vanish at some radius r = p,.
The stress profile for the whole plate is shown in Fig. 5.

As is seen from Fig. Sa, for a typical annulus {r,, r,, ;> the state of stress is represented
by 4., By ., within the region {ry, pr4 > and by By, ;C,,; within the region {py4 1. "+ 1)
Similarly, within a thicker annulus {ry,, r > Wwe have the state C,,,B,,, within the
region {ry.1, Pr+2y and By Aiiz, AxyAis, for pe, <1 < ryy,. The positive radial
moment within the region {r,, .., attains a maximum for r = pj, , and drops to the
value MY*? for r = r,,,. For a narrow ring, it is possible that p;,, = r,.,.

Integrating the equilibrium equation

U 3

5 3)

d
a(rM,}~ M,=—

and satisfying the yield condition for respective regions, we obtain the stress field through-
out the whole plate. Let us introduce the relations

i =p/R vi=p/R 6;=r/R é=r/R; i=012..,n (3.4)
Mg
a) R b)
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FIG. 5. Stress profile for the plate of Fig, 4.
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The following formulae defining the stress field within the typical region d; < 0 < Oy,

and in the outermost ring are obtained

M, = MgV — qR‘éz[ (%)3] M, = MEHD,

RZ S 3
M‘é‘+l)_q6 /k+1[1‘“(” 5 ) ]§

C_ o 5 R?
"/HlSOSOkHIMr:Mé‘“’(ln“—*—I) 07 =02, 1) My = M+ ME*,

S+ N Ay B
O SO0 < Yeart

Ops 1 6
N -1
Mg = (5k+1 /k+1)(1_lnm’~k+l) ;
k+1
+ R2
5k+1 SéS}’k+2 M Mk+2)ln0k ) Mk+1) ~T--(52—5£+1), sz‘wr+M(0k+2):
+
(3.5)

ME+2) Mkﬂ) Rz 2 Ver2)
) = (5k+1 Vit 2) ({1
4 6k+l

. . 5
Tkt2 SO 00t M, = Mg+3)é‘5+—2+M0“2)(1—%?~2) *%52[1 —(?k—()ﬁ) :}

ME+D Mk+sJ+€1R_20 {_|7eea)’ [ Tre2)
° 0 6 kT2 Brs 2 ouia]

S, <do<1: M,:M‘O"’(1~3 -
R? .
M = i((l — 3.
From (3.5) we obtain the equation determining v,
& \? 3[(5k+1)2 ]( "‘k+1)1
l—{——] =={"~] —1|{l=In% . (3.6)
(" ) ARWES! ks 1

Pr+1
o, V] 3 . . -1
Teer| 1 - T”k* +5E e 2= 04 )p [ In 402
' 2 Op+ 1

ik+1
, Seist? > Tk+2 } e
= Vkes| Tl {H0ke2| I - 3 1*(;" :
T3 K+ 2 K+ 2

The curvature rates are determined from the flow law for the sides 4;8;, and B;C; of the

Tresca hexagon. We have
4i>0, k,=0 on AB;, and 4 >0, k<0, A+k =0 on BC, (37
where
. bdw, . dd as)

L= o .
' o ds’ ! d(52
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The rates of displacements are expressed in the form
w, =DJO+E, on AB, and w;= FInd+G; on B(C, (3.9)

where: D,, E; and F;, G, are constants.
Satisfying the continuity conditions of Ww; at junctions between adjacent regions, we
obtain

5, \ 7! 6~90
l_ln}’kﬂ_ k) ln?kﬂ:l__wk__{_wk, (St Tw 1D

Oki1 Yret Ok+1 | Vh+1— 0k

(Wye1—Wi) [1 +

. . Y 5 |\ . .
(Wk+1“Wk)(1*ln ~k+1— : In T Witts w1 O 105
k+1  Yk+1 Ok+1
W= . ) y R 3
(Wk+2_wk+1)(_w+ln Hz—l) In —+w iy, Okt s Vi)
Yi+2 k+1 k+1
5 55 (3.10)
. . ¥ TT0—0 , .
(Wk+2_wk+l)(’u+ln££—1) —’(E‘*’Wkna (Prr2o Oks275
Tk+2 K+1 Tk+2

anl(l_é)(l—én—l)_l’ <5n~1’ 1>

It can be checked that the curvature rates satisfy the inequalities (3.7). There are hinge
circles at = J; where dw;/dd changes in a discontinuous manner.

Our task is to select such values of §; which correspond to minimum of volume. In
what follows, we shall discuss several particular cases. Obviously, the simplest case corres-
ponds to a plate of constant thickness. Denoting its thickness by 2h,, the limit bending
moment by Mj and the volume by V,, we have

qR?

2q\2 3
EEA VA (i) R V.= n(ﬁ) R, 3.11)

Mg =
7 6 30, 30,

For a plate composed of annuli of different thickness, we can write

zq b 2q 3
2h; = Bi{=—] R, V= —| R, .
e ol 5.12)
where B; = h/h, (i = 1,2,...,n) and a = V/V, are the thickness and volume coefficients

for the plate considered. These coefficients characterize both the geometry of the plate
and its volume relative to the plate of constant thickness.

1. Plate with the exterior reinforcing ring

In this case we have 6, = r(/R, 3, = r,)/R= 1,3, = p,/R, 7, = p,/R, 73 = p3/R and
M,(y1) = M,(y,) = 0, M,{y,) = max. The equations defining limit bending moments
M, M and y,, 7, are obtained from (3.5) and (3.6) upon settingn = 3and §, —» ; = 1.

We have
71 3 5%
1—1 —_— = — — ] = W2 3082 ,,"Z

i z[(yl) 1} i)

LY} -1
o IR R
1
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From the first equation we obtain 3, = 0-730 §, ; the second equation is solved for several
values of 6; and the results are presented in Fig. 6. For 6, > 0715, the coefficient y, = 1
and the point A4 on the stress profile (Fig. 6) passes onto the M ,-axis.

The limit bending moments are given by

R2
MY = %V% = bohi;
(3.14)
(1+7,+72) 0 < d, <0715:
2 gR’ 2
M(O) = “? = boh 5
Py ‘
(3 —361-1)] lnof-) 0715 <9, < 1.

Fig. 6 presents the thickness and volume coefficients 8, f, and a. It is seen that for o, > 0-92
the plate volume becomes smaller than that of plate of constant thickness and tends to a
limiting value « = 0-730 for 6; — 1. The limiting case corresponds to the infinitely high
rib of zero width. It should be noted that Hopkins and Prager [1] considered the plate of
stepwise varying thickness; for 6, = 0-8 it was obtained o = 0-93. A better design in our
case can be obtained for § > 0-97, if the thickness coefficient §, = 4-4 is admitted.

o My | £
3;__ ¢ XA T
O) | < b) Be A fh
B g ~ )
N‘ [ n %._JA. 4
6 d M 11
J% ¥ i [ o A Ty
J L ey n TS o &
14T ‘—g‘ . i{ ‘*.-5 D, E. 1
1(______‘ ¢ 3
12 ’
— \\Z
/‘ L
101 /
06- />

0 b — + +— } d

~00 02 04 06 08 0

FiG. 6. Circular plate with the exterior reinforcing ring; volume and thickness coefficients . ff,, /§,
characterize the design with respect to plate of constant thickness.
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ii. Plate with the interior reinforcing ring

In this case there are two design parameters 3, = r{/R, 8, = r,/R (65 = 1). The values
of 3., 7, and of bending moments are obtained from the set (3.5), (3.6) by setting n = 3.
Similarly as previously, we have y, = 0-730 6, and the value of 7, is given by the equation

v V1 v A3 Nt
[r%+%(r%—6%)](ln§) = {55[1—52—(5) }rl} (1—3—2—) . (3.15)
1 2

S A e

FiG. 7. Plate with the interior reinforcing ring.

The corresponding bending moments are given by

2
My = q}; s (3.16)
3 -1
y y i
R {55[1—52—(5) ]+1}(1—3§ , foré,#1 or 8, <0715whend,—1;
2y __ 417"
M= (3.17)

-1
[r%+%(1_5%)1(1n5i) » 0715<6, <1 whend,~1;
1

and the thickness coefficients f,, B,, 5 are calculated from (3.16). The volume coefficient
equals

a = 83(By — B)+85(B,— B3)+ Bs. (3.18)

The values of B, and « are given in Table 1. When 6, = 1, we obtain the previously con-
sidered case of the plate reinforced by exterior ring. Setting o, = 0, the case of the plate
with thickness increasing toward the center is obtained. It is seen from Table 1 that the
volume coefficient a attains the smallest value a = 0-625 when 6, = 6, = 0-8. This is
theoretically the smallest volume which can be attained when the plate is reinforced by
the interior rib of infinite thickness.

1i. Plate reinforced by two ribs
Because numerical calculations become lengthy in this case, we consider only the

limiting case when §, = §,, d; = 1. From the general formulae (3.5)+3.6) it is found that
the minimum value of the volume coefficient « = 0-547 is attained when 8, = §, = 0-75.
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TABLE |
g
‘ 1-0 09 0-8 07 0-6 05 03 01
0,
*
1- i
0 0730t
2:608 -
0-9
1-028 0631
08 1-987 2723 -
1-089 0936 0625
077 4805
0-811
075 3715
0-848
07 1-696 2026 2727 -
1-115 0998 0911 0:661
06 1-505 1-710 2:007 2:650 - %
1-121 1-026 0971 0916 0724
05 1-376 1-514 1-680 1-931 2:510 -0
1-123 1-038 0998 0968 0934 0793
03 1-188 1-265 1-334 1-406 1-499 1659 —
h 1-101 1-030 1-005 0996 0-991 0986 0917
01 1054 1-103 1135 1-157 1-172 1-186 1262 — X
1:004 0982 0967 0970 0977 0987 0999 0-989
0 1-000 1-040 1-062 1071 1-070 1-061 1-031 1-005
1-000 0941 0-931 0938 0-952 0967 0-990 09996
*B,.
ta

4. ALTERNATIVE FORMULATION OF THE PROBLEM

As is seen from the previous analysis, the volume of a solid plate carrying prescribed
loading depends on the maximum height which is admitted in design. This implies an
alternative formulation of the optimal design problem. Instead of looking for the variable
height, we can assume that this is prescribed and the plate is reinforced by ribs in one or
two perpendicular directions ; the height of ribs 2k, is equal to the prescribed plate thickness,
Fig. 8a. Several types of design can now be considered. For instance, it can be assumed that
the central sheet thickness 24, and the rib height 2, are given and the width of ribs in both
directions is to be determined as well as their layout within the plate. The problem would
become similar to that for piates reinforced by rods distributed along the lines of principal
bending moments [7]. Here, we shall not pursue this problem but shall discuss a simpler
case assuming that the circular plate is reinforced by densely distributed circumferential
ribs of constant height 2k, and the central sheet has variable thickness 2k, . Thus the two
design variables [, and 2h; should be determined. We shall treat the plate as arthotropic
and the limit bending moments are defined by the relations, cf. Fig. 8



Optimal design of solid plates 793
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Fig. 8. Circular plate of constant thickness 2h, with constant (a) and variable central sheet thickness
2h, (b).

il

re2ha

where [/l = 4, h,/h, = ¢. Denoting m, = M,/boh3, m, = M,/byh3, the plate volume can

be expressed as follows

mi+m,
1+m}

V= 2h, rdr. (4.2)

A static solution satisfying the local extremum condition of (4.2) can be obtained from the
equilibrium (3.3) and the Euler’s equation, the latter yielding

dm,
r___

o~ 2mE = 2m,—m, 41 = 0. 4.3)

However, it can be checked that this solution corresponds to local volume maximum
and should be rejected. Since the minimum may be non-analytical, it can only be numerically
evaluated by considering various sets of statically admissible stress states. Assume, for
instance, the following set depending on one parameter m

M, = $sq(3+m)(R*—r?), M, = 1q[R*(3+m)—r*(1 +3m)). (4.9

r

Let h, = nh,, where hy = (q/6,)*R is the maximum thickness of the design (3.1). The plate
volume corresponding to the static field (4.4) can be calculated from (4.2)

4n? (3+m)*
3+m‘—1) In [1+ n }}

4.5)

y = Vo {7—3m nl—m) 4n*(l—m) 2n(l —m)

V, “16G+mE 3+m  (3+m? = 3+m

where V}, is the volume of the design (3.1). If we obtain «, < 1, sufficiently large value of n
should be assumed. For instance, when n =2, m = —2, we have o, = 0:974. More
economical designs than (3.1) can thus be obtained if the prescribed thickness is approxi-
mately twice as much as that of (3.1). Figure 8b presents the design forn =2, m = 2.

5. CONCLUDING REMARKS

Solution satisfying the condition of constant rate of plastic work on lateral surfaces of
solid plates may not correspond to a local minimum ; moreover, they do not correspond
to an absolute minimum of volume since theoretically a zero volume solution can be
obtained. The examples presented in this paper illustrate quantitatively the effect of single
and densely distributed ribs on economy of design. The problem of optimal design of solid
plates (or shells) should thus be modified by limiting the maximum plate thickness or
prescribing the region in which the plate is to be located.
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It may be noted that similar peculiarities should be encountered when considering
other types of optimal design, for instance requiring maximum stiffness or maximum
buckling loads of elastic plates.
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AbGerpakT—3anava 06 ONTUManbHOM NPOCKTHPOBAHMH CIUIOLIHBIX TUIACTHH CBOOMTCA K ONPEHENICHHIO
NepeMEHHOM TOJILHHBL, COOTBEICTBYIOLIEH MUHMMYMY oObeMa IPH NOCTOAHHOM MpERENLHON Harpyske.
JIo cux nop, YCIOBHE MOCTOAHHOM CKOPOCTH AMCCHIALMH Ha BHELUHMX IOBEPXHOCTSX TIACTHHBI, 00bIMHO
NPHMEHSUIOCH TIPH PeLieHrEH Takoi 3agayn. Ho 3To ycriopue COOTBETCTBYET TONIBKO 3KCTpeMymy obbeMa,
xotTopoe BooOuie He mpeacTaBnuseT cOGON NOKAIBHOTO MHHMMYM, TeM Dosee He MOXET MpPCACTABAATH
abcontorHoro mMunuMmyma. [TocTpoeHnl nBa NMPUMEPA NPOEKTHPOBAHUA KOHCONBHOH NMONOCH ¥ KpyrnoH
I1aCTHHBI, THE NOKA3AaHO, YTO CYUIECTBYET MHOTO DElleHHM, COOTBETCTBYIOWMX MEHbLIEMY O0beMYy YeM
MpY BLITOJIHEHUH YCIIOBUA TIOCTOSHHOM CKODOCTH Jmccumauunu. TlpencrasieHa apyras ¢GopMynamMpoBka
3ana4yy 00 ONITHMAJIBHOM MPOEKTHPOBAHNY CILTOMIHBIX MJIACTHH.



